

__

Shift-Left Security
Critical TechWorks

__

Author

Lourenço Santos-1181586

ISEP Advisor

Prof. Luís Nogueira - LMN

CTW Supervisor

Joel Martins

CTW Technical Supervisors

José Maia

Diogo Mota Almeida

David Barreiro

2021/2022

Shift-Left Security

Instituto Superior de Engenharia do Porto i

Acknowledgements

I would like to thank Critical TechWorks for the opportunity and for the

welcoming environment they offered me. Particularly I’d like to thank the ITOps team:

Joel Martins, José Maia, Diogo Almeida, David Barreiro for their guidance. The

members of the ITOps team were my “go-to” guys and were my mentors throughout

this whole process.

Huge thanks to the Tetris team as well, with whom I’ve been working for a part

of this internship and who taught me a lot.

Thanks to Doaa Assaf for her suggestions during this internship and availability,

even though she’s from a completely different team inside CTW (IT Security team),

which I also had the pleasure to get to know and interact with, something that shows

the great spirit inside this company.

I am grateful as well to Carlos Cunha, who was part of the ITOps team too,

unfortunately now he’s no longer working at the company, but he’s one of the reasons

I got this internship.

I would also like to thank professor Luís Nogueira for always providing quick

support, guidance, and helpful suggestions.

Once ITOps, ITOps forever.

Shift-Left Security

Instituto Superior de Engenharia do Porto ii

Summary

DevSecOps, a relatively new term in the application security (AppSec) space, is

about introducing security earlier in the software development life cycle (SDLC) by

expanding the close collaboration between development and operations teams in the

DevOps movement to include security teams as well.

Essentially, DevSecOps means that security is a shared responsibility, and

everyone involved in the SDLC has a role to play in building security into the DevOps

CI/CD workflow.

The earlier we introduce security into the workflow, the sooner we can identify

and remedy security weaknesses and vulnerabilities. This concept is part of “shifting

left,” which moves security testing toward developers, enabling them to fix security

issues in their code in near real time rather than waiting until the end of the SDLC,

where security was bolted on in traditional development environments.

 DevSecOps spans the entire SDLC from planning and design to coding,

building, testing, and release, with real-time continuous feedback loops and insights.

To implement DevSecOps, organizations should consider a variety of

application security testing (AST) tools to integrate into their CI/CD process, will be

expanded later in this report. Some commonly used AST tools follow:

• Static Application Security Testing (SAST)

• Software Composition Analysis (SCA)

• Interactive Application Security Testing (IAST)

• Dynamic Application Security Testing (DAST)

Key words (Theme): DevSecOps, Security, Pipeline, AST, Maturity Model

Key words (Technology): Docker, ZAP, DSOMM, Dependency-Check

Shift-Left Security

Instituto Superior de Engenharia do Porto iii

Table of Contents
1 Introduction ... 1

1.1 Motivation .. 1

1.2 The Organization ... 1

1.3 The Project ... 2

2 Context .. 6

2.1 Problem .. 6

2.2 State of The Art ... 7

 DevSecOps Globalization .. 7

 Existing Technologies ... 10

 SAST .. 15

 DAST ... 21

 Aquasec Trivy ... 22

 Threat Modeling ... 23

3 Work Environment .. 27

3.1 Planning... 27

 Scrum or Waterfall? ... 29

 User Stories .. 30

3.2 Communication ... 30

3.3 Tools .. 31

4 Analysis and Design ... 33

4.1 Dependency-Check Integration .. 33

4.2 Dependency-Track Integration ... 34

4.3 Aquasec Trivy Integration .. 35

4.4 OWASP ZAP Integration ... 36

4.5 Full Pipeline Integration .. 1

4.6 Threat Model by Threat Dragon .. 1

5 Solution Implementation .. 3

5.1 Injecting Security into CI/CD Pipelines ... 3

Shift-Left Security

Instituto Superior de Engenharia do Porto iv

 OWASP Dependency-Check ... 3

 OWASP Dependency-Track .. 7

 Aquasec Trivy ... 10

 OWASP ZAP .. 15

5.2 Threat Model ... 18

 Installation .. 18

 Threat Model for the Internal Tools ... 19

6 Conclusions ... 22

6.1 The Process .. 22

6.2 Results ... 21

6.3 Suggestions Erro! Marcador não definido.

References .. 25

Shift-Left Security

Instituto Superior de Engenharia do Porto v

Table of Figures

Figure 1- DSOMM Implementation Levels ... 3

Figure 2- DSOMM Structure .. 4

Figure 3- Workshop "Nice to have" from DSOMM .. 4

Figure 4- Container vs VM ... 12

Figure 5- Aquasec Trivy .. 22

Figure 6- Batman's Threat Model .. 23

Figure 7- Threat Dragon diagram ... 26

Figure 8- The Scrum cycle .. 28

Figure 9- Reasons against Waterfall .. 29

Figure 10- Jira active sprint .. 30

Figure 11- Dependency-Check Integration .. 33

Figure 12- Dependency-Track Integration ... 34

Figure 13- Aquasec Trivy Integration ... 35

Figure 14- OWASP ZAP Integration .. 36

Figure 15- Full Pipeline Integration .. 1

Figure 16- Threat Model for Internal Tools ... 1

Figure 17- Dependency-Check Report ... 4

Figure 18- Dependency-Check Maven plugin .. 5

Figure 19- Supression of a false positive ... 5

Figure 20- Dependency Check on JenkinsFile .. 6

Figure 21- Build fail due to log4j vulnerability ... 6

Figure 22- CycloneDX Pom Configuration .. 8

Shift-Left Security

Instituto Superior de Engenharia do Porto vi

Figure 23- Dependency-Track Pom Configuration ... 8

Figure 24- Build package and image to use with trivy 10

Figure 25- .trivignore file.. 11

Figure 26- Trivy stage on JenkinsFile ... 11

Figure 27- Ignored CVE by Trivy ... 11

Figure 28- Warning in Jenkins .. 12

Figure 29- Aquasec Trivy Output ... 13

Figure 30- Pipeline fail due to vulnerability ... 14

Figure 31- CVE-2021-44228 caught by Trivy .. 14

Figure 32- ZAP config file ... 16

Figure 33- ZAP output .. 17

Figure 34- Internal Tools Threat Model ... 19

Figure 35- Part of Threat Dragon Report ... 20

Figure 36- Folder provided with all the research... 23

Figure 37- DSOMM Points Comparison ... 21

Shift-Left Security

Instituto Superior de Engenharia do Porto vii

Table of Tables

Table 1 - Chosen technologies ... 10

Table 2- Dependency-Check vs Dependency-Track (OWASP, 2021) 21

Shift-Left Security

Instituto Superior de Engenharia do Porto viii

Notation and Glossary

AWS Amazon Web Services

BOM Bill-Of-Material

CI/CD CI/CD combines practices of continuous integration and

either continuous delivery or continuous deployment.

CI/CD bridges the gaps between development and

operation activities and teams by enforcing automation in

building, testing and deployment of applications (CI/CD,

n.d.).

Container OS-level virtualization that shares the services of a

single operating system kernel, using fewer resources

than virtual machines (Docker (software), n.d.).

Containerization The action of setting up a container for deployment.

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DAST Dynamic Application Security Testing

ESOFT Software Engineering subject from the 2nd semester of

Computer Engineering in ISEP

Git Version Control System

IAST Interactive Application Security Testing

ISEP Instituto Superior de Engenharia do Porto

ITOps DevOps team that guided me through this whole

internship

OWASP Open Web Application Security Project® (OWASP) is a

nonprofit foundation that works to improve the security

of software

Shift-Left Security

Instituto Superior de Engenharia do Porto ix

PESTI ISEP subject in which the internship is considered

RDBMS Relational Database Management System - database

management system used by relational databases such as

Oracle databases, MySQL and PostgreSQL.

SAST

 SCA

Static Application Security Testing

Software Composition Analysis

SDLC Software Development Lifecycle

SSDLC Secure SDLC

Tetris Team I’m working with, and which is responsible for the

development of the internal tools for the company

US/ User Story Describes the type of user, what they want and why

Unit CTW Corporate is divided into numerous Units. These

Units are divided in teams, and each team works on its

own projects.

VM Virtual Machine

ZAP Zed Attack Proxy

Shift-Left Security

Instituto Superior de Engenharia do Porto x

Shift-Left Security

Instituto Superior de Engenharia do Porto 1

1 Introduction

This document reports the development of the internship project executed in

the context of the PESTI subject at Critical TechWorks.

The first chapter describes the project, the student’s motivation, the

organization, as well as the report structure.

1.1 Motivation

As part of the Informatics Engineering curriculum at ISEP, students are

challenged to study and develop a solution for an informatics engineering problem.

This represents a great opportunity to expand and improve the skillset acquired

throughout the course.

With this internship, both soft and technical skills could be further developed.

This project also presented the opportunity to work with high-end emerging and

growing technologies, which was tempting.

This project was a welcomed first contact with local tech companies, providing

a jumpstart into the job market.

1.2 The Organization

Established in 2018, Critical TechWorks is a company formed as joint venture

between BMW Group and Critical Software to lead the future of motion. Critical

TechWorks was put together exclusively to support BMW in building software for its

future driving machines.

The BMW Group provides its technology-centric challenges, loyalty, and

industry expertise on how to make hi-tech and ultra-reliable cars, while Critical

Shift-Left Security

Instituto Superior de Engenharia do Porto 2

Software brings in its culture, values, software development talent and proven agile

methodologies.

Autonomous driving, car info-entertainment systems on the car, and

electrification are just some of the technologies in development by joint venture, on

top of the increasing efficacy of production on the group factories.

The BMW Group owns 51% of the Critical TechWorks partnership and Critical

Software the remaining 49% of the company. (Critical Techworks, 2021)

1.3 The Project

The implementation of a DevSecOps culture is becoming more useful and

necessary nowadays. When was first interviewed for this internship, the team I’m

currently working with, was looking for someone that could help them improve

security in their projects, integrating it in the DevOps process to facilitate the life of

the developers, and work side by side with the operations team.

This team is working on the internal tools of the company, so my first tasks

were to get to know the technologies they are using and study the state of art of

DevSecOps so I could start from zero and know what I was doing.

While I was studying the state of art of DevSecOps I came across a term called

“Maturity Models”.

A maturity model is a tool that helps people assess the current effectiveness

of a person or group and supports figuring out what capabilities they need to acquire

next to improve their performance.

Here’s a simple example of a Maturity Model. We might define levels like this:

Level 1. Knows how to make a dozen basic drinks (eg "make me a Gin

and Tonic")

Level 2. Knows at least 100 recipes, can substitute ingredients (eg "make

me a Vieux Carre in a bar that lacks Peychaud's")

Shift-Left Security

Instituto Superior de Engenharia do Porto 3

Level 3. Able to come up with cocktails (either invented or recalled) with

a few simple constraints on ingredients and styles (eg "make me something

with sherry and tequila that's moderately sweet"). (Fowler, 2014)

Then I found a Maturity Model for DevSecOps implementation called the

DSOMM (DevSecOps Maturity Model), illustrated in figure 1 and 2.

The DevSecOps Maturity Model shows security measures which are applied

when using DevOps strategies and how these can be prioritized.

With the help of DevOps strategies security can also be enhanced. For

example, each component such as application libraries and operating system libraries

in docker images can be tested for known vulnerabilities.

Attackers are intelligent and creative, equipped with new technologies and

purpose. Under the guidance of the DevSecOps Maturity Model, appropriate

principles and measures are at hand implemented which counteract the attacks.

(OWASP, 2021)

Figure 1- DSOMM Implementation Levels (OWASP, 2021)

Shift-Left Security

Instituto Superior de Engenharia do Porto 4

After some research about this matrix, I decided to schedule a workshop about

the first 2 levels of the DSOMM with the unit I’m working with, so we could all decide

the measures to implement.

Figure 3- Workshop "Nice to have" from DSOMM

In the figure 3, that represents a table that I made on Microsoft Excel I filtered

the points that we, as a team, considered important to have in our unit to have better

security standards.

Figure 2- DSOMM Structure

Shift-Left Security

Instituto Superior de Engenharia do Porto 5

With all this information, my team and I were able to create some User Stories

related to the implementation of some of these practices, for example:

- SPIKE: Test semgrep for a few tetris frontends

- SPIKE: Test find-sec-bugs in a few Tetris backends

- SPIKE: Test OWASP SKF

- SPIKE: Test OWASP Dependency-Check

(Spike is an article that we publish on our platform to share our knowledge

related to specific topics)

These are just an example of some US that were created, others weren’t

Spikes, but since I had no experience with these tools, I had to do a lot of research and

then try to implement them on our projects before integrating these tools in the

pipeline.

As we saw on the Microsoft Excel sheet, there were many things to implement,

so there were no reasons for me to evaluate the 3rd and 4th levels.

Summing all the points we had implemented, considering level 1 – 1 point and

level 2 – 2 points we got a total of 38 points out of 103 points, where we

considered 86 would be nice to have, which will be taken into consideration

when I finish my internship to see how many more points, we were able to get

since I’ve started working here.

Shift-Left Security

Instituto Superior de Engenharia do Porto 6

2 Context

In this chapter, the project is contextualized with the problem that the

company had and what was the solution implemented to overcome this problem.

2.1 Problem

When I first arrived at the team I’m working with, there were no security

concerns around this development process. They adopted a DevOps culture, which

consists in a set of practices, tools, and a cultural philosophy that automate and

integrate the processes between software development and IT teams. It

emphasizes team empowerment, cross-team communication and collaboration,

and technology automation.

The DevOps movement began around 2007 when the software development

and IT operations communities raised concerns about the traditional software

development model, where developers who wrote code worked apart from

operations who deployed and supported the code.

A DevOps team includes developers and IT operations working collaboratively

throughout the product lifecycle to increase the speed and quality of software

deployment.

DevOps teams use tools to automate and accelerate processes, which helps to

increase reliability. A DevOps toolchain helps teams tackle important DevOps

fundamentals including continuous integration, continuous delivery, automation, and

collaboration. (DevOps, 2021)

DevOps values are sometimes applied to teams other than development.

When security teams adopt a DevOps approach, security is an active and integrated

part of the development process. This is called DevSecOps.

Shift-Left Security

Instituto Superior de Engenharia do Porto 7

As I mentioned before, DevSecOps consists, basically, in integrating the

security to this continuous development process, and when I first got at the company,

I had to start this whole process from scratch. That’s when I found the DSOMM to

guide me through this phase.

2.2 State of The Art

The state of the art provides an overview of the solution and compares it with

similar ones, highlighting why this project is unique and relevant.

 DevSecOps Globalization

The relationship between development and security teams is often

contentious. Security might see developers as a liability when it comes to protecting

data and systems, and developers often view security as a disruption to their

workflow.

Both parties are right if the organization in which they work fails to create an

environment of collaboration and shared goals between development and security.

Without that kind of culture, the two groups will inevitably be at odds with one

another. (Nadeau, 2019)

The article cited portraits real histories from the following companies—

Microsoft, Verizon, and the Pokemon Company—these 3 examples have very different

business models and security needs. However, they all benefited from taking a

DevSecOps approach to their internal development process.

The success stories include:

- A Verizon developer dashboard providing vulnerability visibility

- Pokemon Company embraces security by design to protect children’s

privacy

- Sharing information, best practices bring development and security

together at Microsoft

Shift-Left Security

Instituto Superior de Engenharia do Porto 8

These are just small examples from big companies who have been benefitted

from a DevSecOps approach.

Nowadays, most “big shark” companies have adopted this methodology, so it’s

only logical for us to follow their example.

 Why is security so important?

Over the past years, there have been an increase of attacks and data breaches

all over the world. These attacks and data breaches can lead a company to bankruptcy,

besides many more risks associated with it.

Nowadays, security tools are so expensive, and engineers specialized in this

field are so well paid since everyone is becoming aware to the relevance of security.

For example, in a successful online store, a DOS attack can cost thousands or

millions of euros to the company, a data breach of a company can expose millions of

users or employees and risk the end of that same company.

Between 2020 and 2021, the personal data of 700 million LinkedIn users,

nearly 93% of the company’s members, was on sale online. Though the data did not

include login credentials or financial information, it included a lot of personal

information, such as:

- Full names

- Phone numbers

- Physical addresses

- Email addresses

- Geolocation records

In January 2021, the largest personal data breach in Brazilian history was

discovered (223 million records). The data sets were discovered by PSafe and then

reported by Tecnoblog. The databases included names, unique tax identifiers, facial

images, addresses, phone numbers, email, credit score, salary and more. The data also

Shift-Left Security

Instituto Superior de Engenharia do Porto 9

contains the personal data of several million deceased individuals. In addition, 104

million vehicle records were available. (Henriquez, 2021)

Security researcher Alon Gal discovered a leaked database belonging to

Facebook, containing 533 million accounts.

According to Gal, “A database of that size containing the private information

such as phone numbers of a lot of Facebook's users would certainly lead to bad actors

taking advantage of the data to perform social-engineering attacks or hacking

attempts.” (Holmes, 2021)

 Advantages of a DevSecOps approach

First, it’s an improvement of DevOps, where we integrate security practices

and tools before the deployment of the code. Then, we have a faster security without

the risks, developers wanted to create code as quickly as possible, despite the number

of checks required before the results could go live. This way, DevSecOps Engineers can

check the code for possible vulnerabilities during the development process.

Another advantage is that the company is able to lower the prices. Automation

is hardly a new concept, and anyone familiar with it knows that it offers three primary

benefits: speed, reliability, and cost reduction. DevSecOps automation enables

organizations to satisfy security targets with less of a human factor (that is to say, less

manpower). (Gallagher, 2021)

Another advantage is more reliable security practices. Automation is applied

to processes designed to find and highlight security vulnerabilities in code. The clarity

offered by DevOps and DevSecOps pipelines also makes it clear who is best suited to

solve specific issues. With this setup, issues are more likely to be found and repaired

earlier on, so much so that more problems can be solved within the timeframe before

release, resulting in higher-quality end products.

Shift-Left Security

Instituto Superior de Engenharia do Porto 10

 Existing Technologies

This section briefly describes the technologies used to develop the solution.

The table below summarizes the technologies chosen.

Table 1 - Chosen technologies

Database type PostgreSQL

SCA Tool OWASP Dependency-Check

Container Scanner Aquasec Trivy

Containerization and deployment Docker

Kubernetes

Programming Language Java, TypeScript, JavaScript

 Programming Frameworks Angular, React.js, Quarkus, Spring

Operating System Ubuntu 20.04 (not essential, used

only for testing)

Cloud Virtual Machine Host Azure

AWS

Shift-Left Security

Instituto Superior de Engenharia do Porto 11

 Database

At Critical Techworks, the Tetris team uses PostgreSQL.

 PostgreSQL

PostgreSQL is a powerful, open source object-relational database system that

uses and extends the SQL language combined with many features that safely store and

scale the most complicated data workloads. (PostgreSQL, n.d.)

Unlike other RDMBS, it supports both non-relational and relational data types,

making it one of the most compliant, stable, and mature relational databases

available.

Benefits from using this database:

- Performance and scalability

- Concurrency support

- Deep language support

- Business continuity

- 100% open source

 Deployment

 Containers – Docker

Just as shipping industries use containers to isolate different cargos – for

example, to transport in ships and trains – software development technologies

increasingly use an approach called containerization.

A standard package of software – known as a container – bundles an

application’s code together with the related configuration files and libraries, and with

the dependencies required for the app to run. This allows developers and IT pros to

deploy applications seamlessly across environments. (Microsoft Azure, 2021)

What’s the difference between containers and VMs?

Shift-Left Security

Instituto Superior de Engenharia do Porto 12

VMs were born, designed by running software on top of physical servers to

emulate a particular hardware system.

Each VM runs a guest OS. VMs can run different Oss on the same server. For

example, a Unix VM can sit alongside a Linux VM, and so on. Each VM has its own

libraries, binaries, and apps that it services, and the VM may be many Gb in size.

On the other side, containers sit on top of a physical server and its host OS

(Windows or Linux for example). Each container shares the host OS kernel and, usually,

the binaries and libraries as well. Shared components are read-only, they are light in

size in comparison to the Gb that a VM uses.

Figure 4 represents in a visual way the difference between both this

containers.

Docker is an OS containerization platform. Devs can create containers without

docker, but this platform makes it easier and safer.

Docker is essentially a toolkit that enables developers to build, deploy, run,

update, and stop containers using simple commands and work-saving automation

through a single API. (IBM, n.d.)

Figure 4- Container vs VM

Shift-Left Security

Instituto Superior de Engenharia do Porto 13

Docker tools and terms:

- DockerFile

- Docker images

- Docker containers

- Docker Hub

- Docker Daemon

- Docker Registry

 Cluster - Kubernetes

Kubernetes is a portable, extensible, and open-source platform for managing

containerized workloads and services, that facilitates both declarative configuration

and automation. (Kubernetes, 2021)

Kubernetes provides us with a framework to run distributed systems

resiliently, such as:

➢ Service discovery and load balancing - Kubernetes can expose a container

using the DNS name or using their own IP address. If traffic to a container

is high, Kubernetes can load balance and distribute the network traffic so

that the deployment is stable.

➢ Storage orchestration - Allows us to automatically mount a storage system

of your choice, such as local storages, public cloud providers, and more.

➢ Automated rollouts and rollbacks - We can describe the desired state for

your deployed containers using Kubernetes, and it can change the actual

state to the desired state at a controlled rate. For example, we can

automate Kubernetes to create new containers for your deployment,

remove existing containers and adopt all their resources to the new

container.

➢ Automatic bin packing - We provide Kubernetes with a cluster of nodes

that it can use to run containerized tasks. You tell Kubernetes how much

CPU and memory (RAM) each container needs. Kubernetes can fit

containers onto your nodes to make the best use of your resources.

Shift-Left Security

Instituto Superior de Engenharia do Porto 14

➢ Self-healing - Kubernetes restarts containers that fail, replaces containers,

kills containers that do not respond to your user-defined health check, and

does not advertise containers to clients until they are ready to serve.

➢ Secret and configuration management - Kubernetes lets you store and

manage sensitive information, such as passwords, OAuth tokens, and SSH

keys. You can deploy and update secrets and application configuration

without rebuilding your container images, and without exposing secrets in

your stack configuration.

 Cloud Provider - Azure & AWS

For host we use Azure and AWS.

Azure is a cloud computing platform with solutions such as: Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) that can

be used for services such as analytics, virtual computing, storage, networking, …

(Microsoft Azure, 2021)

AWS, just like Azure is a cloud computing platform and offers services for app

development and analytics, such as Amazon EC2:

➢ Server configuration and hosting;

➢ Amazon S3: Data storage and movement

➢ AWS 101: Elastic Load Balancing for scalable performance

➢ AWS Overview: Using CloudFront to deliver a better user experience

➢ Elastic Block Store (EBS): Low-latency instance access

➢ Amazon Route 53: The AWS DNS service

➢ Cloudwatch: Monitor your AWS environment

 System - Ubuntu

Ubuntu is a complete Linux OS. In my case I used Ubuntu 20.04 because it was

easier for me to perform tests or commands, since I’m more used to work with Linux

Terminal rather than Windows PowerShell or Windows CMD.

Shift-Left Security

Instituto Superior de Engenharia do Porto 15

 SAST

Source Code Analysis (SCA) tools, also known as Static Application Security

Testing (SAST) Tools, can help analyze source code or compiled versions of code to

help find security flaws. (OWASP, 2021)

SAST tools can be added into your IDE. Such tools can help you detect issues

during software development. SAST tool feedback can save time and effort, especially

when compared to finding vulnerabilities later in the development cycle.

Examples of SAST tools:

• Klocwork

• SpectralOps

• Checkmarx

• Veracode

• Dependency-Check

Strengths:

• Scales well – can be run on lots of software and can be run repeatedly (as

with nightly builds or continuous integration).

• Identifies certain well-known vulnerabilities, such as:

o Buffer overflows

o SQL injection flaws

• Output helps developers, as SAST tools highlight the problematic code, by

filename, location, line number, and even the affected code snippet.

Weaknesses:

• Difficult to automate searches for many types of security vulnerabilities,

including:

o Authentication problems

o Access control issues

o Insecure use of cryptography

Shift-Left Security

Instituto Superior de Engenharia do Porto 16

• Current SAST tools are limited. They can automatically identify only a

relatively small percentage of application security flaws.

• High numbers of false positives.

• Frequently unable to find configuration issues since they are not

represented in the code.

• Difficult to ‘prove’ that an identified security issue is an actual vulnerability.

• Many SAST tools have difficulty analyzing code that can’t be compiled.

o Analysts frequently cannot compile code unless they have:

▪ Correct libraries

▪ Compilation instructions

▪ All required code

 OWASP Dependency-Check

 Overview

OWASP Dependency-Check is a SCA tool. It attempts to detect publicly

disclosed vulnerabilities contained within a project’s dependencies. This tool does this

by determining if there is a Common Platform Enumeration (CPE) identifier for a given

dependency. If found, it will generate a report linking to the associated CVE entries.

(OWASP, 2021)

Dependency-Check can be used to scan applications (and their dependent

libraries) to identify any known vulnerable components. It has a command line

interface, a Maven plugin, which I’ll talk about later when integrated on the pipeline,

Ant task and a Jenkins plugin.

Later we’ll be able to see its implementation on the pipeline in more detail and

check the results, but this tool downloads all CVE entries from the NVD database and

in case there is any dependency with a vulnerability the build will fail according to the

CVSS level that we provide on that is serious enough to cause a failure.

Shift-Left Security

Instituto Superior de Engenharia do Porto 17

 OWASP Dependency-Track

 Overview

Dependency-Track is an intelligent Component Analysis platform that allows

organizations to identify and reduce risk in the software supply chain. Dependency-

Track takes a unique and highly beneficial approach by leveraging the capabilities of

SBOM. This approach provides capabilities that traditional Software Composition

Analysis (SCA) solutions cannot achieve. (OWASP, 2021)

 SBOM

A “Software Bill of Materials” (SBOM) is effectively a nested inventory, a list of

ingredients that make up software components. The following documents were

drafted by stakeholders in an open and transparent process to address transparency

around software components and were approved by a consensus of participating

stakeholders. (NTIA, 2021)

There are 4 level of details for SBOMs:

• Licenses

• Modules

• Patch Levels

• Backports

Most of the discussion about SBOMs is roughly at the license level.

But who needs a SBOM? Any organization that builds software needs to

maintain a software BOM for their codebases. Organizations typically use a mix of

custom-built code, commercial off-the-shelf code, and open-source components to

create software.

Shift-Left Security

Instituto Superior de Engenharia do Porto 18

 Dependency-Check vs Dependency-Track

 Dependency-Track Dependency-Check

Software Type Platform Library with multiple

implementations:

• Command line

interface

• Build plugins

(Maven, Ant, etc)

• Jenkins plugin

Approach

Software Bill-of-Materials

(SBOM) which can be

automatically generated

at build-time or obtained

from vendors

Scans files on filesystem

and extracts evidence

with varying degrees of

confidence

Vulnerability Intelligence • Precise matching

via NVD

• Sonatype OSS

Index

• NPM Audit API

• VulnDB

• Fuzzy matching via

NVD

• Sonatype OSS

Index

• NPM Audit API

• Retire.js

Outdated Version

Identification

• Composer None

Shift-Left Security

Instituto Superior de Engenharia do Porto 19

• Hex

• RubyGems

• Maven

• NPM

• NuGet

• PyPi

Ecosystems supported Ecosystem agnostic (all

ecosystems supported)

10+ with varying degrees

of maturity

Reporting

Dynamic intelligence and

metrics delivered via

REST API or web interface

Per-project statically

generated HTML, XML,

JSON, and CSV reports

License Support Resolves over 500 SPDX

license IDs as well as

supporting unresolved

license names

Unresolved license names

as evidence

Jenkins Plugin Yes (bidirectional)

Yes (unidirectional)

Sonarqube Plugin No Yes

Shift-Left Security

Instituto Superior de Engenharia do Porto 20

Vulnerability aggregation • Defect Dojo

(vendor

supported)

• Kenna Security

(natively

supported)

• Fortify SSC

(natively

supported)

• Security Compass

(vendor

supported)

• ThreadFix (vendor

supported)

• CodeDx (vendor

supported)

• Defect Dojo

(vendor

supported)

• Nucleus Security

(vendor

supported)

• Orchestron

(vendor

supported)

• Security Compass

(vendor

supported)

• ThreadFix (vendor

supported)

• ZeroNorth (vendor

supported)

Notification Support • Slack

• Microsoft Teams

• Webhooks

• Email

None

Auditing Per-project and global

auditing workflow

supporting analysis

decisions, comments, and

Suppression file with

support for CPE,

filename, and regex

pattern matching

Shift-Left Security

Instituto Superior de Engenharia do Porto 21

suppressions that are

captured and tracked in a

per-finding audit log

Private Vulnerability

Repository

Yes No

Perspectives • Portfolio of

projects

(applications,

services, devices,

etc)

• Project

• Dependency

• Component

• Vulnerability

• License

• Project

• Dependency

• Vulnerability

Table 2- Dependency-Check vs Dependency-Track (OWASP, 2021)

 DAST

Dynamic Application Security Testing (DAST) is a procedure that actively

investigates running applications with penetration tests to detect possible security

vulnerabilities. (Rapid7, 2022)

DAST tools provide insight into how your web applications behave while they

are in production, enabling your business to address potential vulnerabilities before a

hacker uses them to stage an attack.

Shift-Left Security

Instituto Superior de Engenharia do Porto 22

As your web applications evolve, DAST solutions continue to scan them so that

your business can promptly identify and remediate emerging issues before they

develop into serious risks.

DAST Tools continually search for vulnerabilities in a web app that is in

production.

Upon identifying a vulnerability, a DAST solution sends automated alerts to the

appropriate teams so they can prioritize and remediate it.

Businesses can also use DAST to assist with PCI compliance and other types of

regulatory reporting.

 Aquasec Trivy

Trivy (tri pronounced like trigger, vy pronounced like envy) is a simple and

comprehensive scanner for vulnerabilities in container images, file systems, and Git

repositories, as well as for configuration issues. Trivy detects vulnerabilities of OS

packages (Alpine, RHEL, CentOS, etc.) and language-specific packages (Bundler,

Composer, npm, yarn, etc.). In addition, Trivy scans Infrastructure as Code (IaC) files

such as Terraform, Dockerfile and Kubernetes, to detect potential configuration issues

that expose your deployments to the risk of attack. (Aquasec, 2021)

Figure 5 represents the “skeleton” of this tool.

Trivy can easily be integrated to common CI/CD tools like Jenkins, GitLab CI,

Circle CI, Travis CI, and more.

Figure 5- Aquasec Trivy

Shift-Left Security

Instituto Superior de Engenharia do Porto 23

 Threat Modeling

Threat modelling is a key element to integrate security into software systems.

It enables us to identify critical areas of design which needs to be protected. Over the

time various threat modelling approaches and methodologies have been developed

and are being used in the process of designing secure web applications. This approach

varies from conceptual frameworks to practical methodologies. The following

paragraphs present a brief survey of existing threat modelling methodologies and

techniques. (Shafiq Hussain, 2014)

As a simple example of a threat model, in figure 6, it’s represented a diagram

that I’ve shown on a presentation about threat modelling to the team I’m working

with:

Figure 6- Batman's Threat Model

Shift-Left Security

Instituto Superior de Engenharia do Porto 24

This is a funny and a simple way to understand how a threat model works. Here

we can see that the Bat Cave has a low risk of being found by the police and a mid-risk

of being found by the joker. Alfred represents a high risk for batman if the joker finds

him, even though his location is unknown, …

 STRIDE

It’s a lightweight, practical, and user-friendly technique proposed by Microsoft.

STRIDE stands for:

• Spoofing (S): impersonating as a legitimate user

• Tampering (T): modifying legitimate information

• Repudiation (R): denying a particular event or action performed in the

system

• Information disclosure (I): unauthorized exposure of confidential

information

• Denial of Service (D): making the system unavailable for legitimate user

• Elevation of Privilege (E): getting higher privilege than granted for a

particular user

STRIDE analyzes weakness against each component of the system that can

possibly be exploited for threats, thereby compromising the whole system. (Sirajuddin

Ahmed, 2019)

The steps are:

1. Decompose the system into components

2. Sketch the data-flow diagram for each component of the system

3. Identify threats for each element in the data-flow diagram using the

STRIDE mnemonics

4. Suggest possible countermeasures to the threat

There are other methodologies to conduct a threat model, such as CIA

(Confidentiality, Integrity, Availability) or LINDDUN (Linkability, Identifiability, Non-

repudiation, Detectability, Disclosure of Information, Unawareness, Non-Compliance).

Shift-Left Security

Instituto Superior de Engenharia do Porto 25

There are many tools that can help us develop this threat model, such as:

• Microsoft Threat Modeling Tool

• OWASP Threat Dragon

• Cairis

• IriusRisk

• Kenna

• Threagile

In my case I used the OWASP Threat Dragon.

Shift-Left Security

Instituto Superior de Engenharia do Porto 26

 OWASP Threat Dragon

Threat Dragon is a free, open-source, cross-platform threat modelling

application including system diagramming and a threat rule engine to auto-generate

threats/mitigations. It is an OWASP Lab Project and follows the values and principles

of the threat modeling manifesto. The roadmap for the project is a simple UX, a

powerful rule engine and integration with other development lifecycle tools.

Threat Dragon supports STRIDE / LINDDUN / CIA, provides modeling diagrams

and implements a rule engine to auto-generate threats and their mitigations. (OWASP,

2021).

In figure 7 we can see an example of a Threat Model developed in this tool:

Figure 7- Threat Dragon diagram

Shift-Left Security

Instituto Superior de Engenharia do Porto 27

3 Work Environment

This chapter is going to describe the work environment in which I spent these

last months.

3.1 Planning

Here at CTW we use the Scrum framework from Agile methodology

Scrum is a framework that helps people, teams and organizations generate

value.

Briefly, to implement this framework we’ll need:

➢ Scrum Master: We call them Scrum Knights, which is many times confused

with a leader of the team, but he is simply the person that ensures the

scrum framework is followed. When the team needs him, he’s most of the

times the “go-to” guy and he’s a “coach” that ensures the team is self-

organized.

➢ Product Owner: We call them Product Visionaries, which is who makes the

bridge between the stakeholders and the development team. This PO

orders the work for the product wanted by the stakeholders into a Product

Backlog.

➢ Scrum Team: This team must be independent from operations and security

team to meet the deadlines and turns a selection of the work into an

increment of value during a sprint.

The following picture illustrates the scrum framework with its many events.

Each sprint starts with a Sprint Planning where all the members from a team

gather (SM, PO, Scrum Team) to discuss which USs should be added to the Sprint

Backlog (each sprint has normally a duration of around 2/3 weeks) from the Product

Backlog to deliver value.

Shift-Left Security

Instituto Superior de Engenharia do Porto 28

During the sprint, the whole team gathers at a defined time, usually in the

morning, and each team member says what they have done the day before, what they

are planning on doing that day and if they have some impediments that could be

blocking them from continuing with their tasks.

The increment corresponds to the value added to the product at the ending of

each sprint.

In the end of the sprint, a Sprint Review and a Sprint Retrospective are usually

done. The Sprint Review is a meeting with the stakeholders where the team shows the

value added to the product on that sprint and the stakeholder can give its feedback,

which many times doesn’t match what the team was expecting, generating more USs

to the Product Backlog.

Finally, the team gathers again to the Sprint Retrospective where they decide

what went well and what went wrong on that same sprint.

Figure 8 represents the whole cycle of Scrum events.

Figure 8- The Scrum cycle

Shift-Left Security

Instituto Superior de Engenharia do Porto 29

 Scrum or Waterfall?

Another common methodology is Waterfall, there’s Kanban as well, which is

similar to Scrum with the main difference being the use of continuous flow instead of

sprints where the tasks are continuously added to their “Sprint” backlog as the

previous USs are finished, but let’s focus on Waterfall.

Waterfall is a sequential development process that flows like a waterfall

through all phases of a project (analysis, design, development, testing, deployment,

and maintenance for example), with each phase.

The main advantages from using this methodology are the chance for

developers to catch design errors during analysis and design stages and this way they

can avoid them in the implementation, the total cost of the project can be accurately

estimated, it’s easier to measure progress according to clearly defined milestones,

customers don’t keep adding new requirements to the project, delaying production.

The main disadvantages are the deadline creep, that means that if one phase

in the process is delayed, all other phases get delayed as well, clients do not get

involved in design and implementation stages, so the client can ask for a car and we

deliver them a motorbike. Client’s many times don’t get satisfied with the frontend,

and in an Agile methodology the client’s going to be able to explain exactly what he

wants.

Figure 9 illustrates this scenario, that many of us must’ve already seen it, as I

record seeing in one theoretical class of ESOFT.

Figure 9- Reasons against Waterfall

Shift-Left Security

Instituto Superior de Engenharia do Porto 30

 User Stories

Jira was used to keep track of the User Stories by our POs. On figure 10, we can

see what a board looks like in our team:

3.2 Communication

At CTW we all communicate via Microsoft Teams, even though there are other

means to do that, this is our preferred tool to interact with each other. Beside Teams

we also use:

• Outlook – Used for announcements to all staff, schedule meetings and every

time we have some technical problem, we have an email of the company which

we often use to get help.

• Slack – Used inside our team for non-work-related talk.

Figure 10- Jira active sprint

Shift-Left Security

Instituto Superior de Engenharia do Porto 31

• Yammer – This is a kind of social media only for the employees of CTW where

we can share our ideas.

• Confluence – Used to publish spikes/articles to share knowledge inside BMW

Group.

3.3 Tools

Beside the tools we use to communicate there are a lot of other tools we are

required to install when we first arrive at CTW, such as:

• Docker - Providers of the virtual machines used for testing.

• IntelIj – Mostly used to work on the backend of some apps.

• Visual Studio Code – Mostly used to work on Frontend, Jenkins Files, Docker

Files, ...

• Ubuntu/WSL – For those who work with Windows, so we have a Linux shell.

• Oh-my-zsh – Not mandatory, but most of us installed it as a shell theme.

• VirtualBox – For a Virtual Environment inside our PC.

• Postman – To perform HTTP requests

• Bitbucket – Git Code Management

In my case, there was a few other tools I installed, and which I’ll talk about

later, such as:

• Threat Dragon – To design a threat model.

• OWASP ZAP – To perform passive/active scans to our tools and find

vulnerabilities on the frontend of our applications.

• Clair - Open-source tool that lets you scan containers and docker images for

potential security problems

• Semgrep - Fast, open-source, static analysis tool for finding bugs and enforcing

code standards at editor, commit, and CI time.

Shift-Left Security

Instituto Superior de Engenharia do Porto 32

 Before and After

When I first entered at this team, I was given a “starter kit guide” to know what

I had to install, what were the common practices of the team, regarding Scrum events

and Communication inside and outside the team.

Now, the newcomers, beside all that stuff that was already given before I

entered this team, are given the threat model of the tools they will be working in, so

that they become aware of the risks and threats to the applications they are

developing. They are forced to comply with the security standards stablished on the

pipeline, this way if they implement something with known vulnerabilities, they’ll be

alerted by the tools that were implemented on the pipeline, such as Dependency-

Check, ZAP and Trivy and won’t be able to finish their releases if the security standards

are not followed or lowered, which is not the objective.

Last, but not least, they have on the team documentation all the documents

I’ve been gathering by the past couple of months about how to maintain the security

tools implemented and what could be the next possible approaches for the future.

Shift-Left Security

Instituto Superior de Engenharia do Porto 33

4 Analysis and Design

4.1 Dependency-Check Integration

When a user commits his code to Bitbucket and tries to build it with Jenkins,

Jenkins does a Quality Check performed by SonarQube and downloads the NVD

database to check if there’s any vulnerability on the project related to outdated

dependencies or unpatched plugins.

Then, the build fails if there’s any found vulnerability above the specified CVSS

on the project’s pom and the user is notified by Jenkins logs which CVE is causing

problems.

If the build passes the user is now able to make a PR and eventually merge

their work if the team approves it.

Figure 11- Dependency-Check Integration

Shift-Left Security

Instituto Superior de Engenharia do Porto 34

4.2 Dependency-Track Integration

When a user commits their code to Bitbucket and tries to build it with Jenkins,

Jenkins does a Quality Check performed by SonarQube, then it creates a Bill-of-

Material (BOM) with CycloneDX to upload to Dependency-Track, this tool downloads

the NVD database to check if there’s any vulnerability on the project related to

outdated dependencies or unpatched plugins and performs an audit with NPM.

Then, the build fails if there are any vulnerability rated as high or critical, or,

for example, if there are 5 vulnerabilities rated as medium risk or 10 vulnerabilities

rated as low risk, that can be defined on pom as well, and sends an alert notification

via Microsoft Teams to the team.

If the build passes the user gets the message of “Build Success” and they’re

now able to make a PR or merge it to the source code in Bitbucket if the team approves

their work.

Figure 12- Dependency-Track Integration

Shift-Left Security

Instituto Superior de Engenharia do Porto 35

4.3 Aquasec Trivy Integration

The user commits their code to Bitbucket and runs the pipeline on Jenkins.

Jenkins, beside everything else that’s running, builds the image with a docker

build command.

Trivy, then, scans that image to search for known vulnerabilities in the

container and downloads a database to compare if there’s any CVE to report.

If Trivy and everything else in the pipeline runs successfully it generates a

component on Jenkins to see the full report of Trivy generated by a JSON file.

Finally, the user can merge their PR after the team’s approval.

Figure 13- Aquasec Trivy Integration

Shift-Left Security

Instituto Superior de Engenharia do Porto 36

4.4 OWASP ZAP Integration

Regarding the OWASP ZAP integration, I couldn’t automate this process,

because I discussed with one of my technical managers the options that we had to

integrate this in the pipeline and there were two problems.

The first one was that the pipeline is already taking around 15 minutes to build,

and, including this would cause the pipeline to take 3-5 minutes longer.

The other problem with this tool was that, to perform an authenticated scan,

we had two options:

1. Disable authentication in the dev environment

2. Create an API Gateway so that I could pass, in the configuration file, an

API Key to bypass the authentication

It was decided that, right now, the best option was to implement a manual

process. As we can see we just run the ZAP Container inside a Docker volume and scan

the target API, which will retrieve the information as output in our machine.

Figure 14- OWASP ZAP Integration

Shift-Left Security

Instituto Superior de Engenharia do Porto 1

4.5 Full Pipeline Integration

Figure 15- Full Pipeline Integration

Shift-Left Security

Instituto Superior de Engenharia do Porto 1

4.6 Threat Model by Threat Dragon

The curved dashed lines for VPN and Authentication stand for Trust Boundaries

and everything placed outside those lines are out of scope, meaning that an attacker

on a Web API outside VPN wouldn’t be able to reach the database without passing

through an authentication system, which should remain nameless for obvious

reasons.

The circles represent processes, such as Web API, Web Server.

Those two parallel lines represent a Store, typically related to DBs, but could

represent a Message Queue or a Web Application Config, for example.

The rectangle represents an Actor, typically we use this to represent the

browser.

Figure 16- Threat Model for Internal Tools

Shift-Left Security

Instituto Superior de Engenharia do Porto 2

Last, but not least, we have the data flows, which are those arrows pointing

from one thing to another. If they are dashed, means that they are out of scope,

otherwise they are in scope and represented in red, because they have threats

associated, such as MITM (Man-in-the-middle) or Vulnerable Transfer Protocols.

Shift-Left Security

Instituto Superior de Engenharia do Porto 3

5 Solution Implementation

This chapter describes the implementation of the solution presented. It covers

details about usage and deployment, details about the implementation, the

development process and problems, testing, and the evaluation of the solution.

5.1 Injecting Security into CI/CD Pipelines

Continuous delivery pipelines are implementations of the continuous

everything paradigm and help validate every commit our teams make. Integrate

automated security checks with the pipeline to give you early warnings and monitor

escaped security vulnerabilities relentlessly. (Atlassian, 2022)

Integrated continuous security approaches scale as your business expands.

Both unit tests and static code analysis operate closest to source code and run checks

without executing the code. Remember, the cost of a defect is low in test, medium in

staging, and high in production. So, invest in security unit tests and static analyzers,

since these are inexpensive and fast, and can save trouble further down the pipeline.

 OWASP Dependency-Check

 Installation and HTML Report

The installation is simple, you just have to the download the latest file of this

tool, when I downloaded it, the version was 6.5.0, then extract the zipped file and run

the following command:

sudo ln -s (pwd)/dependency-check-6.5.0-release/dependency-

check/bin/dependency-check.sh /usr/bin/dependency-check.sh

Shift-Left Security

Instituto Superior de Engenharia do Porto 4

Finally, just check if you don’t have a VPN blocking the communication

between your machine and nvd.nist.gov, which, accidently, happened in my case, and

to get an html vulnerability report just run:

dependency-check.sh --scan project_folder

And you’ll get a report like figure 17:

Figure 17- Dependency-Check Report

Shift-Left Security

Instituto Superior de Engenharia do Porto 5

 Integrating Dependency-Check on the Pipeline

To integrate this tool on the pipeline we’ll have to add the maven plugin of the

Dependency-Check to pom.

Pom.xml should look like figure 18:

The <failBuildOnCVSS> defined at 8 means that any vulnerability rated as

8/10 or higher will cause the build to fail.

Another point that we should look at is the <supressionFile> because as I

mentioned before these kinds of tools have a lot of false positives and this way we

create a file that will suppress these false positive vulnerabilities.

Figure 19 represents a shortage from dependency-check-supression.xml:

Figure 18- Dependency-Check Maven plugin

Figure 19- Supression of a false positive

Shift-Left Security

Instituto Superior de Engenharia do Porto 6

Then we’ll have to add the following code to a Jenkins File, because on the

program we’re integrating this tool we make the builds on Jenkins.

As a proof that this integration was well implemented, on December 9th of

2021 there was a vulnerability with Log4j that was known globally for its danger.

CVE-2021-44228, which is the dictionary entry of this CVE consisted of an

attacker who can control log messages or log message parameters can execute

arbitrary code loaded from LDAP servers when message lookup substitution is

enabled. (NVD, 2021)

We had an internal tool that used this dependency, and when we built the

pipeline, it failed because of this vulnerability.

In this case I’ve set the failBuild at 10, as we can observe on figure 21, so that

it doesn’t disclose other vulnerabilities that we already know and are taking measures

to fix them.

Figure 20- Dependency Check on JenkinsFile

Figure 21- Build fail due to log4j vulnerability

Shift-Left Security

Instituto Superior de Engenharia do Porto 7

 OWASP Dependency-Track

 Installation

3. Run these 2 commands:

curl -LO https://dependencytrack.org/docker-compose.yml

docker-compose up -d

4. Open docker and start the image

5. Go to localhost:8080

6. Sign in with credentials "admin:admin"

7. Change password

8. Login with new password

Shift-Left Security

Instituto Superior de Engenharia do Porto 8

 Integrating Dependency-Track on a Maven Project

First, if you notice on figure 22, you’ll need to add the CycloneDX plugin to

pom.xml, because Dependency-Track needs a BOM to be uploaded to analyze the

project:

Then, let’s add the Dependency-Track plugin to pom.xml, indicated in figure

23:

Figure 22- CycloneDX Pom Configuration

Figure 23- Dependency-Track Pom Configuration

Shift-Left Security

Instituto Superior de Engenharia do Porto 9

After the pom is well configured with the API Key, that you can find on your

front-end localhost by Administration > Access Management > Teams >

Administrators, you’ll be able to upload the BOM to your localhost by the following

cmd:

mvn dependency-track:upload-bom -Ddependency-

track.projectName=arbitrary-name -Ddependency-

track.projectVersion=99.99

You can print the findings by using this following cmd:

mvn dependency-track:findings -Ddependency-

track.projectName=arbitrary-name -Ddependency-

track.projectVersion=99.99

You can print the risk score which is the sum of all CVSS by using this cmd:

mvn dependency-track:score

You can get the metrics by using this cmd:

mvn dependency-track:metrics

Last, but not least, you can delete the project by running this cmd:

mvn dependency-track:delete-project

Shift-Left Security

Instituto Superior de Engenharia do Porto 10

 Aquasec Trivy

 Installation

The process of installation is as simple as running these 5 commands on your

Ubuntu machine:

- sudo apt-get install wget apt-transport-https gnupg lsb-

release

- wget -qO - https://aquasecurity.github.io/trivy-

repo/deb/public.key | sudo apt-key add –

- echo deb https://aquasecurity.github.io/trivy-repo/deb

$(lsb_release -sc) main | sudo tee -a

/etc/apt/sources.list.d/trivy.list

- sudo apt-get update

- sudo apt-get install trivy

 Jenkins Integration

To integrate Trivy in Jenkins pipeline I’d to install the binary file and then

execute trivy.

Other relevant topic is that, to use the recordIssues, I had to install a plugin in

Jenkins’s pipeline called “Next Generation Warnings”.

Following the order of the pipeline, first we must build a package and then the

image to proceed to the image scan by Trivy, as it’s notable on Figure 24:

Figure 24- Build package and image to use with trivy

Shift-Left Security

Instituto Superior de Engenharia do Porto 11

Then, we can stage the Trivy Scanning for the image built, as we see in figure

26. First, we need to get the binary file and extract it, so that after that we can execute

trivy.

The parameters passed on trivy are -f (format json) -o (to save the output on a

file named results.json) and --ignore-unfixed (ignores CVE specified in .trivignore,

represented in Figure 25).

This CVE that we’re ignoring was a false positive and we can see that by

searching this vulnerability on the CVE repository and getting no answers.

Besides that, we can search it on the NVD repository, and we’ll get a result like

figure 27, that this CVE is now classified as **DISPUTED**.

Figure 25- Trivy stage on JenkinsFile

Figure 26- .trivignore file

Figure 27- Ignored CVE by Trivy

Shift-Left Security

Instituto Superior de Engenharia do Porto 12

Finally, we can see that I’ve defined some quality gates in the figure 28, which

can be changed in the future. This way, as it’s configured now, the build on Jenkins

will fail if there’s any HIGH/CRITICAL vulnerability found, and if there are at least 2

NORMAL vulnerabilities the build will raise a Warning.

Figure 28- Warning in Jenkins

Shift-Left Security

Instituto Superior de Engenharia do Porto 13

 Output

To check the output, we just have to enter in the last successful build and click

on a button called “Aquasec Trivy Warnings”, and we’ll get something like Figure 29

(the files were all named as “libs” for security reasons):

 Case of Success

A couple weeks after this tool has been implemented, we were able to see it

in action, when a developer, working with microservices, opened a PR and his build

failed because of a CRITICAL vulnerability, and probably the most known vulnerability

of 2021 (CVE-2021-44228 Log4J), mentioned in Figure 30 and 31.

Figure 29- Aquasec Trivy Output

Shift-Left Security

Instituto Superior de Engenharia do Porto 14

Figure 30- Pipeline fail due to vulnerability

Figure 31- CVE-2021-44228 caught by Trivy

Shift-Left Security

Instituto Superior de Engenharia do Porto 15

 OWASP ZAP

 Installation

1. docker pull owasp/zap2docker-stable

2. Install zap.sh from zaproxy site.

 Usage

First, we want to decide what type of scan we’re going to use. There are three

types of scans: Baseline Scan, Full Scan and API Scan.

The Baseline Scan runs the ZAP spider against the specified target for (by

default) 1 minute and then waits for the passive scanning to complete before

reporting the results. This scan it’s a less evasive scan, since it doesn’t perform any

actual attacks against the target.

The Full Scan runs the ZAP spider against the specified target (by default with

no time limit) followed by an optional ajax spider scan and then a full active scan

before reporting the results. In this case we’re performing an attack against the target.

The API Scan is tuned for performing scans against APIs defined by OpenAPI,

SOAP, or GraphQL via either a local file or a URL. It imports the definition that we

specify and then runs an Active Scan against the URLs found. (OWASP, 2022)

In this case we’re going to perform a Full Scan against the dev environment of

one of our tools.

Shift-Left Security

Instituto Superior de Engenharia do Porto 16

 Testing

First make sure that you have docker running on background and open your

Linux terminal, in this case Ubuntu 20.04.

Once we’re on our machine and after selecting the type of scan we’re going to

perform we should set the parameters of the scan.

Example:

docker run -u 0 -v $(pwd):/zap/wrk/:rw -it

owasp/zap2docker-stable zap-full-scan.py -g gen.conf -t

https://dev-environment.criticaltechworks.bmw.com/

From “docker run” to “zap-full-scan.py” we’re passing the docker parameters,

and, in this case, we’re setting a volume, which means that is the docker machine in

which we’ll perform the scan.

After defining the type of scan, I wanted to generate a configuration file where

I can choose to ignore some warnings with the -g parameter, as we can see here in

Figure 32.

Figure 32- ZAP config file

Shift-Left Security

Instituto Superior de Engenharia do Porto 17

Finally, I set a target so that I can perform this scan, which happens to be the

https://dev-environment.criticaltechworks.bmw.com/. (This URL doesn’t exist, just

used as a demonstration)

And we’ll get an output like this one, presented in figure 33:

Figure 33- ZAP output

Shift-Left Security

Instituto Superior de Engenharia do Porto 18

5.2 Threat Model

 Installation

The installation of this tool could be a little tricky, but here’s how I managed to
do it:

1. Log into your GitHub account, go to Settings -> 'Developer settings' -> 'OAuth

Apps' -> 'New OAuth App'

2. Fill out the form with the following:

• Application name: A unique identifier for the application. This is not critical;

we suggest something like 'Threat Dragon'

• Homepage URL: For local development, use http://localhost:3000

o Threat Dragon defaults to port 3000 but is configurable. If you plan to

run it on another port, be sure to use that port instead!

• Application description: A description for your OAuth app. This is not critical;

we suggest something like 'Threat Dragon for local development'

• Authorization callback URL: http://localhost:3000/oauth/github

o Again, if you plan to run Threat Dragon on another port, use that port

instead!

3. Create a client secret

4. Install openssl if not installed at:

https://slproweb.com/products/Win32OpenSSL.html

5. Generate a key using: openssl rand -hex 16

6. Edit the file example.env with all the info, ex:

GITHUB_CLIENT_ID=6fewqcdxf5465g4

GITHUB_CLIENT_SECRET=4rcwesdrf6r6evfr6sdgvbtf70

GITHUB_SCOPE=repo

NODE_ENV=development

Shift-Left Security

Instituto Superior de Engenharia do Porto 19

SESSION_STORE=local

SESSION_SIGNING_KEY=878fh23478hfrhf2340

SESSION_ENCRYPTION_KEYS= [{"isPrimary": true, "id": 0,

"value": "878fh23478hfrhf2340"}]

7. Go to powershell inside threat dragon folder and paste this cmd with your

path:

docker run -it --rm -p 3000:3000 --env-file

C:/Users/ctw01669/Documents/threat-dragon/.env owasp-threat-

dragon:dev

8. Go to http://localhost:3000 and sign in with your github account.

 Threat Model for the Internal Tools

Figure 34- Internal Tools Threat Model

Shift-Left Security

Instituto Superior de Engenharia do Porto 20

After finishing the threat model, as we can see in figure 34, we can export a

report in pdf for better visualization of the threats, the description of the threats, its

mitigation, …

As we all know SQL Injection is still one of the biggest threats to any Web

Application and can run down a company if their database is exposed online, so I’ll

paste a part of the report, in figure 35, where I’ve explained what’s SQLi (SQL injection)

and defined some of the ways to mitigate it.

Figure 35- Part of Threat Dragon Report

Shift-Left Security

Instituto Superior de Engenharia do Porto 21

5.3 Results

In the following graph, represented in figure 37, we can compare the security

measures that our team already had implemented before I joined them and the

points, I was able to implement while I worked here.

We may notice that the “Nice-to-have column” suffered a downgrade, because

many of these decisions to implement these security measures must be discussed with

a superior and it was decided that this wasn’t the moment, or it was just against the

company policy to, for example, nominate a “security champion on each team” or to

organize a “simple mob hacking”.

As we can see there’s a huge approximation from the blue to the red column,

which are the values we must take into consideration.

These results were calculated by giving one point to each level 1 practice and

two points to each level 2 practice of the DSOMM. This is just a way to visually explain

how the security awareness and practices inside the team have raised substantially,

according to what was implemented during these couple of months.

Figure 36- DSOMM Points Comparison

Shift-Left Security

Instituto Superior de Engenharia do Porto 22

6 Conclusions

The documented internship was aimed to implement security before

deployment, and as we’ve seen by the results it was a success.

This chapter summarizes the work performed, its process and suggests an

approach for future work.

6.1 The Process

When I first got here, I had no clue what I was going to do, and even though I

had a great orientation from my DevOps colleagues, they were no experts in this

security field, so I had to do a lot of research work.

My first two months at the company were dedicated to study what was done

on other big companies and to test some tools that I could use later.

I’ve tested tools that I didn’t integrate on this process before SSDLC, such as:

- SpotBugs

- OWASP Defect-Dojo

- OWASP Security Knowledge Framework (even though it was presented to

the developers)

- Clair

- Semgrep

I didn’t talk about ESLint, which is a SAST tool that was added its dependency

to the package.json of a React project, because it’s not automated.

I added two scripts as well: yarn lint and yarn lint html, and included

this information on the README file, so that the developers can perform a simple

static analysis scan and export it as a HTML report, or just read it on their console.

Shift-Left Security

Instituto Superior de Engenharia do Porto 23

After these months of research, I’ve finally started implementing what I’ve

been studying with the help of the DevOps team that already had the knowledge of

Jenkins, Docker, …

 My last task on this internship was to document everything I did and to provide

a folder, with all the research that I’ve done, as we can see in figure 36, so that the

developers can maintain these tools and maybe, if someone continues what I’ve done

here at CTW, this person doesn’t have to start from scratch.

Figure 37- Folder provided with all the research

Shift-Left Security

Instituto Superior de Engenharia do Porto 24

6.2 Future Work

As we know there are a lot of other practices that can be implemented in this

SSDLC, such as security unit tests, smoke tests, check for malware, …

The first thing I’d give priority would be to implement an API Gateway on the

dev environment, so that we could integrate in the pipeline a DAST tool, such as

OWASP ZAP, that right now is not able to bypass the authentication with an API key.

Another common thing that the dev team usually does is modifying the quality

gates or even comment some security stages to make the build pass, which is not a

good practice at all. Sometimes is just better to delay a release if it comes to that point.

Another practice that I’ve noticed that it’s common is to add dependencies

without checking its composition. Sometimes we only need to spend some more

minutes implementing something that is secure, instead of adding some dependency

without checking its source and its dependency tree. If you want to add a dependency,

make sure that you run Dependency-Track or simply the command mvn

dependency:Tree , if you’re working with maven, to check the dependencies

attached to the dependency imported or to the plugin.

Finally, don’t let the threat model be forgotten. I think it would be useful to

include in a starter kit of the team, so that everyone’s aware of what they’re dealing

with.

Shift-Left Security

Instituto Superior de Engenharia do Porto 25

References

Aquasec. (2021, 12 28). Trivy. Retrieved from Github:

https://github.com/aquasecurity/trivy

Atlassian. (2022, 1 14). DevSecOps. Retrieved from Atlassian:

https://www.atlassian.com/continuous-delivery/principles/devsecops

BMW. (n.d.). Critical Techworks. Retrieved from BMW:

https://www.bmw.pt/pt/topics/fascination-bmw/critical-techworks.html

CI/CD. (n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/CI/CD

Critical Techworks. (2021, 10 30). About. Retrieved from Critical Techworks:

https://www.criticaltechworks.com/

DevOps. (2021, 12 5). Retrieved from Atlassian: https://www.atlassian.com/devops

Docker (software). (n.d.). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Docker_(software)

Docker. (n.d.). Docker overview. Retrieved from Docker: https://docs.docker.com/get-

started/overview/

Fowler, M. (2014, 08 26). MaturityModel. Retrieved from martinfowler.com:

https://martinfowler.com/bliki/MaturityModel.html

Gallagher, P. (2021, 4 30). What are the benfits of DevSecOps. Retrieved from Blog

Good Learning: https://blog.goodelearning.com/subject-

areas/devsecops/benefits-of-devsecops/

Henriquez, M. (2021, 12 9). The top data breaches of 2021. Retrieved from Security

Magazine: https://www.securitymagazine.com/articles/96667-the-top-data-

breaches-of-2021

Holmes, A. (2021, 4 3). Insider. 533 million Facebook users' phone numbers and

personal data have been leaked online. Retrieved from

Shift-Left Security

Instituto Superior de Engenharia do Porto 26

https://www.businessinsider.com/stolen-data-of-533-million-facebook-

users-leaked-online-2021-4?r=DE&IR=T

IBM. (n.d.). Docker. Retrieved from IBM: https://www.ibm.com/topics/docker

Jones, D. (2018, Mar 16). Containers vs. Virtual Machines (VMs): What's the

Difference? Retrieved from NetApp:

https://www.netapp.com/blog/containers-vs-vms/

Kubernetes. (2021, Jul 23). What is Kubernetes? Retrieved from Kubernetes:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Kubernetes. (n.d.). What is Kubernetes? Retrieved from kubernetes:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

McCoy, L. (n.d.). Microsoft Azure Explained: What It Is and Why It Matters. Retrieved

from CCB Technology: https://ccbtechnology.com/what-microsoft-azure-is-

and-why-it-matters/

Microsoft Azure. (2021, 11 30). What is a Container? Retrieved from Azure:

https://azure.microsoft.com/en-us/overview/what-is-a-container/#overview

Mukherjee, J. (n.d.). Devsecops. Retrieved from Atlassian CI/CD:

https://www.atlassian.com/continuous-delivery/principles/devsecops

Nadeau, D. S. (2019, Sep 26). 3 DevSecOps success stories. Retrieved from CSO:

https://www.csoonline.com/article/3439737/3-devsecops-success-

stories.html

NTIA. (2021, 12 20). SBOM. Retrieved from NTIA: https://www.ntia.gov/SBOM

NVD. (2021, Dec 10). Retrieved from NIST: https://nvd.nist.gov/vuln/detail/CVE-2021-

44228

OWASP. (2021, 12 20). Dependency Track. Retrieved from Dependency Track:

https://docs.dependencytrack.org/

OWASP. (2021, 11 10). Dependency-Check. Retrieved from OWASP:

https://owasp.org/www-project-dependency-check/

Shift-Left Security

Instituto Superior de Engenharia do Porto 27

OWASP. (2021, 12 23). Dependency-Check Comparison. Retrieved from Dependency-

Track: https://docs.dependencytrack.org/odt-odc-comparison/

OWASP. (2021, 12 22). OWASP. Retrieved from OWASP Threat Dragon:

https://owasp.org/www-project-threat-dragon/

OWASP. (2021, 10 30). OWASP Devsecops Maturity Model. Retrieved from OWASP:

https://owasp.org/www-project-devsecops-maturity-model/#

OWASP. (2021, 11 3). Source Code Analysis Tools. Retrieved from OWASP:

https://owasp.org/www-community/Source_Code_Analysis_Tools

OWASP. (2022, 1 10). Zap Docker Documentation. Retrieved from ZAP:

https://www.zaproxy.org/docs/docker/

PostgreSQL. (n.d.). Retrieved from PostgreSQL: https://www.postgresql.org/about/

Rapid7. (2022, 1 13). DAST. Retrieved from Rapid7:

https://www.rapid7.com/fundamentals/dast/

Scrum.org. (n.d.). What is Scrum? Retrieved from Scrum.org:

https://www.scrum.org/resources/what-is-scrum

Shafiq Hussain, A. K. (2014). ISSN 1013-5316; CODEN: SINTE 8 . THREAT MODELLING

METHODOLOGIES: A SURVEY, pp. 1607-1609.

Sirajuddin Ahmed, S. A. (2019). Smart Cities- Opportunities and Challenges. Hina Zia.

Sumo Logic. (2019, May 21). AWS. Retrieved from Sumo Logic:

https://www.sumologic.com/insight/aws/

Synopsis. (n.d.). DevSecOps. Retrieved from Synopsys:

https://www.synopsys.com/glossary/what-is-devsecops.html#4

What is PostgreSQL? (n.d.). Retrieved from IBM:

https://www.ibm.com/topics/postgresql

Workfront. (n.d.). Waterfall Methodology. Retrieved from Workfront:

https://www.workfront.com/project-management/methodologies/waterfall

